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When estimating genetic and phenotypic parameters in the form of variance and 

covariance components we maximize a log-likelihood function: 

 Py]y + |C|ln + |V|[ln 
2

1
 - c = y)|l(          [1] 

The general log-likelihood function is based on the multivariate normal density and 

can be rewritten as: 

Py]y + |C|ln + |G|ln + |R|ln [
2

1
 y)|l(          [2] 

 

The form in [2] is much easier to compute than [1]. 

 

In order to obtain the variance of the parameter vector (Var( )) we must find: 

 


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y)|l( 
- = )(I

2

o    [3] 

 
Expression [3] is the observed information matrix. 
 
DMUAI is based on a combination of Newton-Raphson and Fisher Scoring (it is based 
on average of observed and expected information). So in DMUAI the observed 
information matrix is approximated by the average of observed and expected 
information matrices. 
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Asymptotic variance of   is : 
 

 )(I = )Var(
-1

o     [4] 

 

Square roots of the diagonal elements of Var( ) will provide standard errors of 

elements of  . 
 
Genetic parameters are, however, often standardized into, say, heritabilities, genetic 

correlations, and so on. These are generally nonlinear functions of elements in  . 
 

To compute the variance of such non-linear functions of random variables in   we use 
Taylor series expansions. 
 

Let ),....,,f( = g t21   where  t21 ,...,,  is a subset of the elements in the  -vectors. 

 

If we assume f(.)  to be continuous around ̂  and that all derivatives exist and are 

continuous we can expand f(.)  around ̂ , where the ^ indicates the maximizer of [1]. 
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Taking expectations on both sides we obtain: 
 

 )ˆ,...,ˆ,ˆf( = )],...,,E[f(
t21t21   [6] 

 
By subtracting [6] from [5] we get: 
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Squaring both sides and take expectations 
 

 [ = ])],...,,E[f(-),...,,E[f(
2

t21t21   
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In [8] the parameters 
2

i
   ji

 can be obtained from [4]. The left hand side of [8] is the 

definition of a variance. 
 
Defining  as a vector of first derivatives of f with respect to each of the t parameters in 
, then [8] can be written in matrix notation as: 



 

 )(I ')(Var'= ])],...,,E[f(-),...,,E[f(
-1

o

2

t21t21       [9] 

 
Example: 
 
The following bivariate model were analyzed: 
 
y1ijk = F1i + b1j + aik + e1ijk 
y2ijk = F2i + b2j + a2k + e2ijk 
 
where y1ijk and y2ijk were records on trait 1 and 2 resp., F.i were a set of fixed effects, b.j 
were random environmental effects, a.k were additive animal effects and e.ijk were 
random residuals. Trait 1 and trait 2 were measured in disjoint environments and on 
different, but related animals. Due to that b1j, b2j, e1ijk and e2ijk were uncorrelated, and 
a1k and a2k were correlated. 

All in all the  -vector therefore contained seven parameters: 
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The  -vector, than maximized the likelihood function were: 

 

Table 1. Asymptotic (co)variance matrix(*1000) for the  -vector in the example. 
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a 1
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a 2
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b 1
 .5113       
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b 2
 .0093 .3732      
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a 1
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 aa 21
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e 1
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e 2
 .0058 .0330 .0217 -.1572 -.6583 -.0174 .8238 
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Table 2. Asymptotic correlation matrix (SE on diagonal) for the  -vector in the 
example. 
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The following standardized population parameters could be computed: 
 

 




2

e

2

a

2

b

2

a2

1

111

1

 +  + 
 = h  

 

 




2

e

2

a

2

a2

b | 1

11

1

 + 
 = h  

 

 




2

a

2

a

aa

aa

21

21

21

 + 

 = r  

 
Several other population parameters could be computed, but we only use the three 
defined above for illustration. 
 

For the heritability corrected for the random environmental factor ( h
2

b | 1 ) we get is: 
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For the genetic correlation we get: 
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Finally for the heritability ( h
2

1 ) we get: 
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