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When estimating genetic and phenotypic parameters in the form of variance and

covariance components we maximize a log-likelihood function:
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The general log-likelihood function is based on the multivariate normal density and

can be rewritten as:
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The form in [2] is much easier to compute than [1].

In order to obtain the variance of the parameter vector (Var(e )) we must find:
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Expression [3] is the observed information matrix.

DMUALI is based on a combination of Newton-Raphson and Fisher Scoring (it is based
on average of observed and expected information). So in DMUALI the observed
information matrix is approximated by the average of observed and expected
information matrices.
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Asymptotic variance of @ is:
Var( @) = 15(0) [4]

Square roots of the diagonal elements of Var(e ) will provide standard errors of
elements of © .

Genetic parameters are, however, often standardized into, say, heritabilities, genetic
correlations, and so on. These are generally nonlinear functions of elements in o .

To compute the variance of such non-linear functions of random variables in ® we use
Taylor series expansions.

Let g=10,,0,.. ®,) wWhere @,.0,... ®, is a subset of the elements in the © -vectors.

If we assume f() to be continuous around © and that all derivatives exist and are

continuous we can expand f() around © , where the " indicates the maximizer of [1].
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Taking expectations on both sides we obtain
Ef( 1.0, 0N =1@,:6, &) [6]
By subtracting [6] from [5] we get:
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Squaring both sides and take expectations
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In [8] the parameters +; o, canbe obtained from [4]. The left hand side of [8] is the
definition of a variance.

Defining v as a vector of first derivatives of f with respect to each of the t parameters in
0, then [8] can be written in matrix notation as:



EIf( 01,022 ©) - EI 05,0, 011 =v'Var (0)v =v'({(0)v [9]
Example:
The following bivariate model were analyzed:

y1ik = F1i + byj + aix + exijk
yaijk = Fai + boj + azxx + exijk

where y1ijk and y2ik were records on trait 1 and 2 resp., Fi were a set of fixed effects, b
were random environmental effects, ax were additive animal effects and e.jx were
random residuals. Trait 1 and trait 2 were measured in disjoint environments and on
different, but related animals. Due to that by, by, e1ijk and ezijk were uncorrelated, and
a1k and axx were correlated.

Allin all the ¢ -vector therefore contained seven parameters:
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The ¢ -vector, than maximized the likelihood function were:
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Table1. Asymptotic (co)variance matrix(*1000) for the ¢ -vector in the example.
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Table2.  Asymptotic correlation matrix (SE on diagonal) for the ¢ -vector in the

example.
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The following standardized population parameters could be computed:
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Several other population parameters could be computed, but we only use the three
defined above for illustration.

For the heritability corrected for the random environmental factor (n?, ) we get is:
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For the genetic correlation we get:
G 01541
ol ot 201997+ 00765
o ai o ' '

az

= .39198

1 1

ralaz —

00 4, \/(aio—jz \/(.201997) (.00765)

= 25.43002

- . 015414
122 = _ o a2 3 = .- 3 = - 970259
0. 2 Vol (62)2  24/(007655) (201997 )2
015414
Masa, - O aia, _— = - 25.601758

2 ) 3 8
9o, 2ol (02)2  24/(201997) (007655 )2

2 2 2
Or Or Or
_ aiaz 2 aia; 2 aiaz 2
Var( r,.) = —8 Co,n T —6 ) o, + —8 2 Co.,
O aja, O a O a,

OTaa, || O, OV aa, || OTan, 0
+2 2 |0 ouon +2 2 | O ouuyol, +2
06 44, )\ 00y, 06 40, )\ Oy,

= (254300 )°(001850)  + (-.97026) ~(.0068796)  + (-25.60176
+2(25.43001  )(-97026) (00005811 ) + 2(25.43001  )(-25.6017

+ 2(-97026)  (-25.60176  )(-.000033 )

= 1.36972

SE( r,,,,) = V136972 = 117035

2.9026)(-.

004310)

)* (.0008204)

6)(.00028)



Finally for the heritability (n;) we get:
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